120px-XXV+.jpg Helpwiki.jpg Gosuslugi.jpg Vystavka.jpg Использование интерактивной доски Panaboard LogoRobo2-120.jpg

ПскоВики переехала на новую площадку
Некоторые гиперссылки, созданные ранее, могут не работать, так как URL- адрес изменился на http://wiki1.pskovedu.ru

Исследование учащихся в проекте История возникновения чисел

Материал из ПскоВики — сайта педагогического сообщества Псковской области

Перейти к: навигация, поиск

Содержание

Тема самостоятельного исследования учащихся

История возникновения чисел


Цели и задачи исследования

В ходе этого исследования я бы хотела узнать откуда взялось число, как оно трансформировалось в ту систему записи, которая общепринята во всем мире, какие еще существуют и существовали ранее обозначения чисел.

Актуальность проблемы

Современному человеку трудно представить себе математику без обозначений чисел и арифметических действий. Но ведь когда-то же этих обозначений не существовало. А тогда откуда они взялись? И почему именно такие, а не иначе? И вообще много ли их существовало? Ни для кого не секрет, что всюду и повсеместно каждое мгновение наша жизнь наполнена цифрами и числами: день недели, номер автомобиля, магазинный ценник, штрих-код на книжной обложке, количество калорий в пирожном и сколько дней осталось до каникул?.. Вся наша бытность состоит из арифметики, простой или сложной, у нас есть счастливые числа и памятные даты и мы не мыслим свою жизнь без количественной системы счисления. Мы никогда не задумываемся о значимости чисел в нашей культуре, общении и о том, что этим нехитрым знакам можно подчинить все на свете.

Ход исследования

Древние культуры были в большей степени ориентированы на устную речь, на устное обучение, чем современная. Тем не менее, ясно, что практическая необходимость порой заставляла фиксировать точное число каких-либо предметов – например, для целей обмена, расчета числа дней и т. д. Человечество выработало целый ряд различных систем записи чисел – различных нумераций. Одним из древнейших способов фиксации чисел состоял в обозначении каждого предмета некоторой совокупности одним и тем же значком, обозначавшим единицу. Таким образом, число изображалось соответствующим количеством единиц. Такая система записи называется единичной нумерацией. В 1937 в Моравии (на территории современной Чешской Республики) была найдена относящаяся к 3 тысячелетию до н. э. волчья кость с 55 глубокими зарубками; это старейшая из известных в настоящее время записей числа (если, конечно, это действительно запись числа, а не что-либо другое, например, специфический орнамент). В позднейшее время числа тоже обозначались зарубками: еще в XIX в. в Западной Европе применялись деревянные бирки, на которых зарубками фиксировались долги (одна такая бирка оставалась у должника, а другая – у кредитора); у других народов для тех же целей применялись веревки с соответствующим числом узелков (в некоторых районах Китая и Японии такая практика сохранилась до XX в.). Но в чистом виде единичная нумерация не очень удобна, если речь идет о числах, скажем, больше 10: такие обозначения перестают быть наглядными, зарубки или узелки становится слишком долго пересчитывать. Для простоты их группируют в совокупности по 3, по 5 или как-нибудь еще (как, например, штрихи, соответствующие миллиметровым делениям на линейке, сгруппированы по 5). Таким образом возникла необходимость изобретать различные системы счислени.

Позиционные и непозиционные системы счисления

Системы счисления бывают непозиционными (аддитивными) и позиционными (мультипликативными). В позиционных системах значение каждой цифры, зависит от ее положения (места, позиции) в записи числа. В непозиционных системах значение каждой цифры не зависит от ее положения (места, позиции) в записи числа. Число 3333 можно представить в таком виде 3×1000 + 3×100 + 3×10 + 3. Т.е. для представления этого числа используется умножение (по-английски multiplication), отсюда название этой системы - мультипликативная. В непозиционных же системах для представления числа используется сложение всех цифр, по-английски сложение – add. Поэтому другое название этих систем - аддитивные.

Основание системы счисления

Основание системы счисления – это число, на основе которого ведется счет. Например, если основание системы счисления равно десяти, то минимальная счетная группа этой системы счисления равна десяти, это значит, что, сосчитав какие-либо предметы до десяти, мы считаем снова с единицы, но при этом запоминаем число десятков. Есть такие системы счисления, как пятеричная, двенадцатеричная, двадцатеричная, шестидесятеричная, десятеричная Десятеричная и пятеричная система возникла от того факта, что на одной руке человека пять пальцев, на обоих руках 10 пальцев. Если добавить пальцы и на ногах, то будет понятная и двадцатеричная система. Происхождение двенадцатеричной системы тоже связано со счетом на пальцах. Считали большой палец руки и фаланги остальных четырех пальцев. Если двенадцать умножить на пять получим шестидесятеричную систему. Например, на одной руке загибаем пальцы, пока не получим, что отсчитано, пять штук, а на другой руке прикосновением большого пальца к суставам остальных четырех указываем количество этих пятерок. В некоторых системах счисления используются для обозначения цифр буквы, такие системы счисления называются алфавитными. Итак, бывают непозиционные (аддитивные) и позиционные (мультипликативные), пятеричные, десятичные, двенадцатеричные, двадцатеричные, шестидесятеричные и алфавитные системы счисления. Вначале рассмотрим непозиционные (аддитивные) системы счисления.

Непозиционные (аддитивные) системы счисления

Позиционная система счисления

История "арабских" цифр

История наших привычных «арабских» чисел очень запутана. Нельзя сказать точно и достоверно как они произошли. Одно точно известно, что именно благодаря древним астрономам, а именно их точным расчетам мы и имеем наши числа. Между II и VI веками н.э. индийские астрономы познакомились с греческой астрономией. Они переняли шестидесятеричную систему и круглый греческий нуль. Индийцы соединили принципы греческой нумерации с десятичной мультипликативной системой взятой из Китая. Так же они стали обозначать цифры одним знаком, как было принято в древнеиндийской нумерации брахми. Это и был завершающий шаг в создании позиционной десятичной системы счисления. Блестящая работа индийских математиков была воспринята арабскими математиками и Аль-Хорезми в IX веке написал книгу "Индийское искусство счета", в которой описывает десятичную позиционную систему счисления. В XII в. Хуан из Севильи перевел на латынь эту книгу, и индийская система счета широко распространилась по всей Европе. А так как труд Аль-Хорезми был написан на арабском языке, то за индийской нумерацией в Европе закрепилось неправильное название - "арабская".

Вывод

Проследив основные этапы зарождения чисел, их различных систем записей у разных народов, необходимо сделать такой вывод: не зря многие ученые умы интересовались понятием числа, раскрывали его тайны. Да и в наш технократичный век, когда с числами сталкиваешься повсеместно (на денежных знаках, ценниках, компьютерах, панелях стиральных машин и т.д.) это понятие не утратило своей актулаьности. Трудно себе представить как современный человек смог бы прожить, если бы когда-то, много тысчелетий назад, не была бы приоткрыта тайна великих и загадочных чисел.

Список ресурсов

Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики: Пер. с. франц.-М.:Мир,1986.-432с.

Мир чисел. Занимательные рассказы о математике.-С-Пб.:МиМ-ЭКСПРЕСС,1995.-158с.

Я иду на урок математики.5класс: Книга для учителя. М.: Издательство "Олимп", "Первое сентября".1999. -352с.

http://www.megalink.ru/~agb/n/numerat.htm - различные нумерации и системы счисления

http://goldlara.narod.ru – позиционные и непозиционные системы счисления

Кузьмищев В. А. Тайна жрецов майя. 2-е изд. — М., «Молодая гвардия», 1975

Г. И. Глейзер, История математики в школе, 1964

И. Я. Депман, История арифметики, 1965

http://www.svoboda.org - А.Костинский, В.Губайловский, Триединый нуль

http://school-collection.edu.ru история чисел

Вернуться на страницу проекта Числа правят миром

Личные инструменты
Site Statistics